
BeanFactory Developer’s Guide
Version 1.0 Draft

BeanFactory Developer’s Guide

INTRODUCTION.. 3

OVERVIEW ... 3
PURPOSE... 3

Gaps in the JavaBean Component Model ... 3
Gaps in the J2EE Architecture .. 3

DESIGN OBJECTIVES .. 4

ARCHITECTURE... 5

NAMED COMPONENTS ... 5
COMPONENT MODEL ... 5
CONTAINER MODEL... 5
SCOPE & CONTEXT.. 6
DECLARATIVE CONFIGURATION ... 6

INSTALLATION ... 8

WITHOUT A J2EE APPLICATION SERVER.. 8
Installation.. 8
Configuration ... 8

WITH A J2EE APPLICATION SERVER .. 8
Installation.. 8
Configuration ... 8

BEANFACTORY CONTAINER REFERENCE .. 11

BEAN NAMES ... 11
SCOPE... 11
SCOPE CONTEXT.. 13
APIS ... 13

Container Lookup APIs.. 13
Services... 14
JavaBean Adapters... 14

BEAN DEFINITION PROPERTIES FILES ... 15
File Format... 15
Special Properties .. 16
Primitive Data Type Property Initializers... 16
Object Property Initializers ... 17
Complex Data Type Property Initializers ... 17

BEAN DEFINITION PROPERTIES LOADING... 18
Merging .. 18
Properties Loading Sequence .. 19

BEAN INITIALIZATION PROCESS.. 20
CONTAINER INITIALIZATION PROCESS.. 20

MVC ARCHITECTURE REFERENCE.. 21

BEANFACTORY HTTP TRANSACTION ARCHITECTURE.. 21
BEANFACTORY TAGLIBS... 21
FORMHANDLER REFERENCE ... 21

BeanFactory Developer’s Guide

Introduction
Overview
BeanFactory is a container for JavaBeans for non-GUI applications. It is a framework
that allows software components to be developed using industry-standard design patterns
and deployed as named resources within a container that provides lifecycle management.
It allows applications to be built using a component-based building block approach that
enables re-use, extensibility, maintainability and simplicity.

When used in conjunction with a J2EE application server BeanFactory offers a robust
MVC (Model-View-Controller) framework on which web applications can be built. The
MVC architecture builds upon the core container architecture in order provide a simple,
elegant component model on top of which scalable and maintainable web applications
can be built.

Purpose
The purpose of the BeanFactory is to fill a certain gaps in the J2SE and J2EE
architectures.

Gaps in the JavaBean Component Model
The JavaBean component model is one of the most elegant component models ever
devised. Although it was intended primarily to serve as the cornerstone of GUI
applications, the basic design pattern is so simple, intuitive and useful that it is used in
many non-GUI software applications. That said, it has several notable shortcomings:

1) There is no standard method to instantiate and initialize beans using the standard
J2SE APIs.

2) There is no standard way to configure JavaBeans through external deployment
descriptors.

3) JavaBean components do not have a well-defined lifecycle.
4) JavaBeans do not have a named service model ala JNDI.

The BeanFactory fills these gaps with a simple and unobtrusive container for JavaBeans.

Gaps in the J2EE Architecture

The J2EE specification provides a fantastic platform for modeling and implementing
transactional software systems. Unfortunately, while it does a great job of solving some
of the most complex problems, it is somewhat under-developed as an application
framework. Although J2EE best practices allude to the use of a Model-View-Controller

- 4 -

BeanFactory Developer’s Guide

framework, it is only in concept. There is no framework code that facilities an MVC
architecture.

The lack of such an application framework tends to have disproportionately adverse
effects on the extensibility, maintainability and cost of ownership for a given system.
Even though application architects have the best of intentions, the lack of standardization
leads to a lot of one-off architectures that become difficult and costly to implement.

The BeanFactory provides a consistent MVC architecture that enables web based
applications to be built from JavaBean components that live within the BeanFactory
container, which in turn lives within a J2EE application server.

Design Objectives
The BeanFactory architecture was designed such that it would be:

Component Oriented The BeanFactory leverages the industry standard JavaBean
component model. It encourages re-use at both the class level and the component level.

Easy To Use The BeanFactory was designed in such a way, that it requires minimal
knowledge to use. If you understand JavaBeans, you can use the BeanFactory.

Unobtrusive The BeanFactory was designed to do its job without getting in the way of
the software architect and developer. It is a low-entropy architecture that does not dictate
the use of custom object models or design patterns.

Lightweight The BeanFactory was designed to be equally useful in implementing large-
scale enterprise applications as it is in implementing the proverbial HelloWorld
application.

J2EE Compliant The BeanFactory is completely complementary to the J2EE platform.
It builds on the J2EE platform rather than duplicates features already provided.

Open The BeanFactory is open source software. It leverages other high-quality open
source software wherever possible.

- 5 -

BeanFactory Developer’s Guide

Architecture

Named Components
The BeanFactory uses a named component model for all JavaBean components that it
manages. The named component model allows components to be developed and plugged
together much the same way that children assemble tinker toys. JavaBeans objects are
located and instantiated using a simple URL naming syntax.

The following code is fairly self-explanatory.

Container.lookup(“bean:/com/acme/MyBean”);

It looks up a bean named /com/acme/MyBean, instantiates and initializes it if necessary
and returns it to the caller. Depending on the declared scope of the bean, subsequent
attempts to retrieve the same name would return the same bean.

Component Model
The BeanFactory architecture leverages one of the best component models on the market:
JavaBeans. Rather than impose a custom object model in which components must extend
and implement proprietary classes and interfaces, the BeanFactory only requires that one
follow basic JavaBean conventions:

1) JavaBeans must have a public default or no-arg constructor.
2) JavaBeans must have getter and setter methods that conform to JavaBean naming

conventions.

The design pattern could not be much simpler.

The BeanFactory improves on the existing JavaBean component model by providing a
well-defined lifecycle for JavaBean components. Although EJBs have a very well
defined lifecycle, the lifecycle of JavaBeans has been left largely undefined by Sun.

The BeanFactory addresses this lifecycle issue in several ways:

1) By providing a configuration subsystem that allows JavaBeans to be defined in a
declarative manner using externalized deployment descriptors.

2) By providing a standard set of lifecycle callback methods.
3) By mandating that all BeanFactory-managed beans have a particular scope that

determines the bounds of their existence.

Container Model
The BeanFactory borrows the concept of a “container” from the J2EE environment. The
container provides the runtime services that manage the complete lifecycle of

- 6 -

BeanFactory Developer’s Guide

BeanFactory-managed beans. It provides a layer of indirection between the component
developer and the application assembler.

Scope & Context
In the BeanFactory architecture, a component’s scope determines the context from which
it can be obtained by URL. There is not a 1:1 relationship between URL and instance.
Instead, the URL uniquely identifies an instance within a particular scope and calling
context.

The three basic scopes that can be used to define a component’s lifecycle are: static,
thread and transient.

• Static scoped components have a lifespan that is consistent with the JVM itself.
When the JVM shuts down, they can no longer be referenced by URL.

• Thread scoped components have a lifespan that is consistent with a particular
calling thread. Retrieving the same URL from the same thread is guaranteed to
return the same instance of the bean. Retrieving the same URL from different
threads is guaranteed to return a different instance of the bean.

• Transient scoped beans have no lifecycle at all. Subsequent calls to retrieve a
particular URL are always guaranteed to return a different JavaBean instance.

One of the objectives of the BeanFactory architecture is to ensure that it leverages the
J2EE architecture wherever possible. The J2EE servlet architecture has three well-
defined scopes for web applications: application, session, and request.

• Application scoped components have a lifespan that is consistent with a web
application.

• Session scoped components have a lifespan that is consistent with the http
session.

• Request scoped components have a lifespan that is no longer than a single http
transaction.

When used in conjunction with a J2EE application server, the BeanFactory leverages the
J2EE servlet container to maintain instances within the context of these three scopes.

Declarative Configuration
One of the key design goals of the BeanFactory architecture was to have a purely
declarative configuration system that would enable entire in-memory structures to be
defined outside of Java code. The ability to declare entire object graphs has certain
advantages:

1) Architectural transparency. While OO designs are often quite elegant on paper,
by the time they are implemented they can be quite opaque are difficult to
penetrate. The BeanFactory provides architectural transparency down to the
deepest internals of an application.

- 7 -

BeanFactory Developer’s Guide

2) Consistency. The BeanFactory minimizes the need for ad-hoc design patterns.
While OO design patterns are very useful, they have a way encouraging architects
and developers to be too clever for their own good. This is usually manifest by
object factories scattered about with configuration files of various incompatible
formats. The BeanFactory is a combines two very simple patterns: JavaBeans and
the factory pattern.

3) Configurability. A powerful declarative configuration systems allows
applications to configured and reconfigured over time with minimal need to
examine, change or re-compile code.

4) Extensibility. The combination of architectural transparency and configurability
ensures that a system is extensible. If one wants to change the behavior of a core
system, most often the only option is to edit the source code and recompile the
application. By externalizing declaration of components and their implementing
classes, it is possible to enhance behavior of system internals, simply by
extending a given class, implementing new functionality and reconfiguring the
system to use the extended class. Without an externalized declarative
configuration system this is difficult or impossible.

- 8 -

BeanFactory Developer’s Guide

Installation

Without a J2EE Application Server

Installation
Installation is trivial. Just put the “beanfactory.jar” file in your class path, preferably near
the end. The reason for placing it at the end of your class path will be explained later.

The following shows how this might be done:

java –cp myclasspath:beanfactory.jar mypackage.MyClass

Configuration
For now, the simplest way to configure BeanFactory-managed beans is to place a file
named ‘beanfactory.properties’ somewhere in the root of your class path. When the
container initializes, it will search for all such files in the class path and will source them
appropriately.

For now this file can be empty.

As you will see in later sections, there are many different ways to configure beans. Using
beanfactory.properties is just a simple way to get started.

With a J2EE Application Server

Installation
Installation in a web application environment is simple. Just place beanfactory.jar and
beanfactory-servlet.jar in the WEB-INF/lib directory of your web application. You
should not place beanfactory.jar in any other class path for your application server.

However, certain application servers have web application class loaders that have broken
implementations of getResource(). Because the BeanFactory uses this method to
bootstrap itself, it may be necessary to place beanfactory.jar outside of WEB-INF/lib and
include it in an appropriate class path. Please refer to your application server’s
documentation for the correct place to put this file. It will depend on the class loading
mechanism used by your particular application server. In any case, beanfactory-
servlet.jar should always be loaded out of WEB-INF/lib. Failing to place beanfactory-
servlet.jar in the WEB-INF/lib directory of your web application will cause the MVC
subsystem to fail as well.

Configuration

Copy the bftaglib.tld taglib descriptor to your WEB-INF directory. If you are using a
Servlet 2.2 compliant application server, copy the web22.xml to your WEB-INF directory

- 9 -

BeanFactory Developer’s Guide

and rename it to ‘web.xml’. If you are using a Servlet 2.3 compliant application server,
copy the web.xml file in the BeanFactory distribution to your WEB-INF directory. We
recommend that you use a servlet 2.3 compliant application server such as WebLogic 6.1
or Tomcat 4.x.

If you intend to use the BeanFactory with an already-configured web application, you
will need to copy and paste the various sections into your existing web.xml file. There is
nothing tricky about this, but please remember that according to the web.xml DTD, order
of the declarations does matter

- 10 -

BeanFactory Developer’s Guide

- 11 -

BeanFactory Developer’s Guide

BeanFactory Container Reference
Bean Names
All java beans that are loaded by the BeanFactory container have a unique name.

BeanFactory bean names contain a name for the Bean preceded by a namespace.
Examples of such names are:

/MyBean
/my/package/MyBean

By convention, these names follow capitalization conventions of fully qualified java
classes. They can, but need not, match the fully qualified class name of the declared java
class. That is, for a given class, my.package.MyBean, the bean name could be
/my/package/MyBean, but it could just as well be /some/other/naming/scheme/FooBean.

If, for a given bean class, it is likely that there would be only instance, the fully qualified
class name would most likely be used. If, on the other hand, the bean class could have
many different instances, the naming is not likely to match.

Scope
Beans that are managed by the BeanFactory container all contain a declared scope. The
valid scopes are: static, thread, transient, application, session and request. The first three
are valid for any application. The latter three are valid only within a J2EE web
application.

Scope Summary Identity
Static Static scoped beans are

“global” with respect to the
JVM. (More accurately,
they are global with respect
to the Class loader used to
load the container.)

Two lookups for the same
bean name will return a
reference to the same
instance if and only if they
are called from the same
thread.

Thread Thread scoped beans are
resolvable relative to the
execution of a given thread.
If a thread dies, all
instantiated beans within
that scope will be
unreachable and eligible for
garbage collection.

Two lookups to the same
bean will return the same
reference if and only if they
are called from the same
thread.

Transient Transient beans do not have
a real scope. After being
instantiated, the container
does not keep a reference to
them. This makes transient
roughly the same as a
normal Java factory pattern.

Two calls to look up the
same bean name will never
return the same instance.

- 12 -

BeanFactory Developer’s Guide

instantiated, the container
does not keep a reference to
them. This makes transient
roughly the same as a
normal Java factory pattern.

return the same instance.

Application Application scope bean
instances are maintained by
the underlying J2EE servlet
container. Internally the
beans are stored by using
the
getAttribute()/setAttribute()
methods of Servlet Context.
They have the same
lifecycle as a
ServletContext instance.

Two calls to look up an
application scoped bean
will return the same
instance if and only if both
lookups are called from
within the same web
application.

Session Application scoped bean
instances are maintained by
the underlying J2EE servlet
container. Internally they
are stored by using the
getAttribute()/setAttribute()
methods of HttpSession.
They have the same
lifecycle as an HttpSession
instance.

Two calls to look up an
application scoped bean
will return the same
instance if and only if both
lookups are called from
within the same
HttpSession.

Request Request scoped beans are
maintained by the
underlying J2EE servlet
container. Internally they
are stored using the
getAttribute/setAttribute
methods of
HttpServletRequest. They
have the same lifecycle as
an HttpServletRequest
instance.

Two calls to look up a
request scoped bean will
return the same instance if
and only if both lookup
operations are called from
the same HttpRequest.

The key concept to understand here is that the bean name-to-instance mapping is not a
1:1 relationship except in the case of ‘static’ beans. A bean’s name can only be resolved
with respect to its declared scope. For instance, if a bean is declared as a request scoped
component, it can have as many instances as there are HttpRequests. A particular
instance must be resolved by its name and its scope. Neither name nor scope alone is
sufficient to resolve a bean.

- 13 -

BeanFactory Developer’s Guide

At this point you might be asking, “How does the container know which application ,
session or request context it should use to resolve a particular URL?”

The answer is that all operations against the BeanFactory container occur in a particular
scope context that is bound to the currently executing thread.

Scope Context
Before the BeanFactory can resolve beans of thread, application, request or session
scope, the calling thread must be registered with the BeanFactory. In a web application
this is done automatically by a servlet filter in a servlet context.

This makes it possible to resolve beans without having to keep explicitly keep references
to their containers.

In fact, there are a few special “magic” URLs that are mapped in any Servlet
environment. /javax/servlet/ServletContext,
/javax/servlet/http/HttpRequest and /javax/servlet/HttpResponse can be used
to resolve the respective ServletContext, HttpRequest and HttpResponse objects.

Because beans can resolve these objects anywhere within a bound context, it is possible
to write code that is much cleaner. That is, developers do not need to ensure that these
objects are passed throughout the call stack. This added level of indirection allows
tremendous flexibility with regard to building clean and modular object models. It
enables applications to be architected with certain assumptions that establish a contract
about the execution environment.

In this regard, the BeanFactory provides a similar environment to an EJB container, but
with lighter weight components that are optimized for front-end application development.

APIs
The full BeanFactory JavaDoc API reference can be found online at this location:
http://www.beanfactory.net/javadoc/index.html However, browsing the JavaDoc belies
the simplicity of actually using the Framework, so we recommend that you read this API
summary first.

Container Lookup APIs
The BeanFactory Container APIs are very simple to use. They all exist in the
gnu.beanfactory.* package. There is a single class
gnu.beanfactory.Container which provides access to 90% of the functionally
that one needs to use the BeanFactory. It has two static methods that are nearly identical:

java.lang.Object lookup(String beanURL) throws BeanFactoryException
java.lang.Object resolve(String beanURL) throws BeanFactoryException

- 14 -

BeanFactory Developer’s Guide

Both of these methods take beanURLs and return objects from the container. The
resolve() method implements a superset of the functionality that lookup()
implements. The only difference between the two is that resolve() will resolve
nested properties while lookup() will not.

The following code snippits give examples of how these methods would be used:

Foo foo = (Foo) Container.lookup(“bean:/Foo”);

Bar bar = (Bar) Container.resolve(“bean:/Foo.bar”);

In the first, we look up a bean named /Foo. In the second example, we look up the bar
property of the /Foo bean. This is functionally equivalent to calling foo.getBar();

Services
Although any java class with a default constructor can be used with the BeanFactory,
there is a special class that implements some useful behavior. The
gnu.beanfactory.Service class allows one to implement “services” that run in their own
threads. The Service class implements java.langRunnable, so all one needs to do is
implement the run() method. By setting the $startup property, these services can be set to
start automatically when the Container initializes.

JavaBean Adapters
There are often APIs which implement their own factory patterns that would prevent
them from being used. The JDBC API is a good example. Connection instances are
created via the new operator, but rather by the DriverManager class

One can use these APIs with the by using the gnu.beanfactory.FactoryAdapter interface.
It declares a single method Object createBean(). If the BeanFactory sees that a class that
it is instantiating implements this interface, it will invoke createBean() and return that
value.

In the following pseudocode, we demonstrate the pattern:

public class ConnectionAdapter implements
gnu.beanfactory.FactoryAdapter {

String myURL;

public String getURL() {
return myURL;

}
public void setURL(String url) {

myURL = url;
}
public Object createBean() {

return DriverManager.getConnection(url,”user”,”pass”);
}

}

- 15 -

BeanFactory Developer’s Guide

Using the following properties,

/MyConnection.$class = MyAdapter
/MyConnection.url=jdbc:url:goes:here

we can use the following code to look up a Connection as if it was a bean.

Connection myConnection = (Connection) Container.lookup(“bean:/MyConnection”);

It is worth noting that objects that are exposed through the FactoryAdapter interface obey
all of the scope rules of normal JavaBeans within the container.

Bean Definition Properties Files
The BeanFactory uses standard properties files to declare and define the JavaBean
components that are managed by the BeanFactory container. Although properties files
are less powerful than XML-based configuration formats, they have two key advantages:

1) Properties files are less verbose and easier to read than XML
2) Properties files can be layered and merged on top of one and other with ease.

The latter of these two advantages is essential to building a framework that yields
highly configurable applications.

File Format
The basic syntax for bean definition files is the following:

[fully qualified bean name].[property]=[value]

A fully qualified bean name is similar in concept to a fully qualified class name in Java.
The key differences are that fully qualified bean names a) refer to instances, not classes
and b) are separated by slashes ‘/’ instead of dots ‘.’. Examples of fully qualified bean
names are: ‘/my/namespace/MyBean’ and ‘/AnotherBean’.

The property portion specifies either a JavaBean property name to be initialized or a
special property that is used by the BeanFactory container. If it is a JavaBean property, it
should adhere to standard JavaBean naming conventions. (See next section for
explanation of special properties.

The value portion of a property definition represents either a value to which the JavaBean
property value should be initialized or a URL reference to another JavaBean.

The following set of properties declares a bean named /my/Bean to have static scope.

/my/Bean.$class=my.BeanClass

- 16 -

BeanFactory Developer’s Guide

/my/Bean.$scope=static

Special Properties
There are a number of special properties that are used to define a bean instance. All of
these special properties begin with a dollar sign ‘$’. They are:

Special
Property

Required Description Valid Values

$class Required Specifies the fully qualified
class name for the bean.

Any fully qualified
class name.

$scope Optional Specifies the scope of the bean
in the container. If this
property is not specified, the
value of ‘static’ is implicit.

static,
transient,
thread,
request,
session or
application

$startup Optional Specifies whether or not the
bean should be initialized
when the container is
initialized.

true or false

$parent Optional The fully qualified URL of a
bean from which to inherit
properties.

A fully qualified
bean URL of the
form bean:[bean
name].
Example:
bean:/my/Bean

$delimiter Optional Specifies the delimiters for
multi-valued attributes such as
arrays, Vectors and
Hashtables. Defaults to “,|”.

A string containing
valid delimiter
characters.

Primitive Data Type Property Initializers
All primitive data types can be initialized by the BeanFactory container. Primitive
wrapper objects can be initialized as well. The complete list is:

boolean, byte, char, int, long, float, double, java.lang.String,
java.lang.Byte, java.lang.Character, java.lang.Integer,
java.lang.,Long, java.lang.Float, java.lang.Double,
java.math.BigInteger, java.math.BigDecimal

String values from the properties definition are automatically converted into the data type
declared by the JavaBean property.

- 17 -

BeanFactory Developer’s Guide

Object Property Initializers
One of the most powerful features of the BeanFactory is its ability to configure entire
object graphs in a declarative fashion. That is, any JavaBean property that holds an
object reference can be initialized by the container. This can be accomplished by
specifiying a fully qualified beanfactory URL. In the following example, /my/Bean will
be initialized with a reference to /another/Bean

/my/Bean.myProperty=bean:/another/Bean

The BeanFactory container is can resolve circular references without a problem.

Complex Data Type Property Initializers
The BeanFactory has first-class support for four kinds of complex data types: arrays,
java.util.Vector, java.util.Hashtable, java.util.Properties,
Providing first class support for these data types makes it possible to initialize very
complex object graphs using only a declarative syntax.

The values of arrays can be: primitives, primitive wrappers or Objects:

Initialize an array of int primitvies

MyBean.intArray=1,2,3,4

Initialize an array of objects using URL references

MyBean.objectArray=bean:/SomeBean,bean:/AnotherBean

Vectors behave like arrays of java.lang.Object. The values will be interpreted as Strings
unless the values begin with bean:, in which case they will be resolved by URL.

The following will initialize a vector
containing three strings.

/MyBean.myVector = a,b,c

The following will initialize a vector containing two beans:
/MyBean.myVector=bean:/Foo, bean:/Bar

The following will initialize a vector
containing one bean and one string:
/MyBean.myVector=bean:/Foo, SomeStringValue

Hashtables obey the same rules as Vectors, albeit with a slightly different syntax:

A Hashtable of String->String mappings (“a”->”1”, “b”->”2”)
/MyBean.myHashtable =a=1,b=2

Hashtable keys and/or values can contain URL references
1) A bean /A will be mapped to the string “A”

- 18 -

BeanFactory Developer’s Guide

2) The String “B” will be mapped to the bean /B
3) The bean /Foo will be mapped to the bean /Bar
/MyBean.myHashtable=bean:/A=A,B=bean:/B,bean:/Foo=bean:/Bar

Properties are handled slightly differently from Hashtables in that URL references are not
resolved.

Will contain a mapping of strings: “bean:/A” -> “bean:/B”
/MyBean.myProperties=bean:/A=bean:/B

Bean Definition Properties Loading

Merging
The BeanFactory container is initialized by one large master set properties. However
these properties are loaded from many separate properties files and merged one on top of
another.

Consider an example in which there are two properties files, config1.properties and
config2.properties. Config1.properties is loaded first and then config2.properties is
loaded. The contents of these files are as follows

Config1.properties:

/A.$class=a.b.c
/A.someProperty=abc

Config2.properties:

/B.$class=d.e.f
/A.someProperty=override

The effective merged property set would be:

/A.$class=a.b.c
/A.someProperty=override
/B.$class=d.e.f

You will note that the initialization value of “someProperty” is overridden by the value in
config2.properties.

Arrays, Vectors, Hashtable and Properties have a special syntax that allows the values to
be appended together. Rather than replace the values that already exist, the following
would append
If config1.properties contains:

/A.arrayProperty=1,2,3

and config2.properties contains:

- 19 -

BeanFactory Developer’s Guide

/A.arrayProperty+=4,5

Then the effective merged properties would contain:

/A.arrayProperty=1,2,3,4,5,6

Properties Loading Sequence
The way in which properties are loaded is slightly different depending on whether the
loading is taking place in a J2EE Web Application Context or not. The following will
take place regardless of whether the Container is being loaded in a WebApplication
context or not.

1) The class loader that loaded the Beanfactory.jar, will search its class path for all
resources named “/beanfactory.properties”. These beanfactory.properties files
will be sourced from right to left in the class path. That is, if the class path is
JarA.jar;JarB.jar, and both jars contain a beanfactory.properties file, the one in
JarB.jar will be sourced first. This is consistent with the left-to-right precedence
of the CLASSPATH concept. That is, properties in JarA.jar will take precedence
over properties in JarB.jar.

2) After the class path has been searched, the container will look for a system
property class beanfactory.configpath (specified via –Dbeanfactory.configpath
when the JVM is invoked). The configpath will contain a semicolon ‘;’ delimited
list of properties files that will be sourced from right to left and merged onto the
properties that were loaded from the class path. Again the leftmost properties
files will take precedence over files to the right.

This will establish the base set of properties. For each web application that is loaded this
base set of properties will be used and properties will be merged on top using the
following sequence:

1) The Servlet Container will search for “/WEB-INF/beanfactory.properties” If
it exists, it will be sourced and merged on top of existing properties.

2) The Servlet Container will check to see if the web application property
“beanfactory.configpath” has been set. If it is set, it will be interpreted as a
semicolon delimited set of properties files that will be parsed and merged from
right to left (again, consistent with standard CLASSPATH precedence). These
resources are relative to the web application root, so an example
beanfactory.configpath might be “/WEB-INF/foo.properties;/WEB-
INF/bar.properties”

Please note that static scoped beans should not be declared from a properties file
sourced by the Servlet Context. If the container detects this, it will reject and unload
the bean definition. This helps to ensure that web applications do not interfere with
each other.

- 20 -

BeanFactory Developer’s Guide

Bean Initialization Process
The bean initialization process looks something like this:

1) Container.lookup() is called to obtain a bean by its url.
2) The Container looks up the declared scope for the bean
3) The container looks inside the proper scope context to see if an instance already

exists. If it exists, it is returned to the user.
4) If the bean does not exist, the container instantiates the proper java bean class.

The default constructor is invoked.
5) The container checks to see if there is a method preInit(). If it exists, it is

invoked.
6) The container initializes all JavaBean properties that are specified in the bean

definition. If URL references must be resolved, the container will walk through
the object graph and initialize all dependent beans.

7) The container checks to see if there is a method postInit(). If it exists, it is
invoked.

8) The bean placed in the proper scope context.
9) The bean is returned to the caller.

Container Initialization Process
The BeanFactory container is initialized automatically upon first use. There is no explicit
initialization API that one must call. Any BeanFactory API call will cause the container
to initialize itself. The BeanFactory will send a fair amount of information to the console
regarding the initialization process. (This output is generated through Log4J, so it can be
turned off and/or redirected to another location.)

When the container initializes, it follows the following process:

1) The container loads a master set of bean definition properties. It does this
according to the process outlined in the previous section.

2) For each declared bean, the BeanFactory validates that the bean definition is
valid. Invalid bean definitions are removed from the system and an appropriate
error message is logged.

3) The container iterates though all bean definitions that have the ‘$startup’ property
set to true. These are loaded in sequence and placed in the proper scope context.
If these beans throw an exception during initialization they are unloaded from the
system, an error message is logged and initialization continues.

4) The container proceeds with the user-initiated action that caused it to initialize
itself, most likely and invocation of Container.lookup().

If a web application is being initialized that uses the BeanFactory, some secondary
initialization steps are taken.

1) A secondary properties set is sourced by the web application context loader.
2) Bean definitions declared by the web application are validated. Any Bean

Definitions declared within a servlet context that are declared to have ‘static’

- 21 -

BeanFactory Developer’s Guide

scope are unloaded by the system. This is done to prevent collisions between
multiple web applications.

3) All beans declared with the $startup property set to true are initialized.

MVC Architecture Reference
BeanFactory HTTP Transaction Architecture
TBD

BeanFactory Taglibs
TBD

FormHandler Reference
TBD

